Cladionol A, a Polyketide Glycoside from Marine-Derived Fungus *Gliocladium* Species

Yuu Kasai,[†] Kazusei Komatsu,[†] Hideyuki Shigemori,[†] Masashi Tsuda,[†] Yuzuru Mikami,[‡] and Jun'ichi Kobayashi^{*,†}

Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan, and Research Center for Pathogenic Fungi and Microbial Toxicoses, Chiba University, Chiba 260-0856, Japan

Received February 9, 2005

A new polyketide glycoside, cladionol A (1), was isolated from the cultured broth of a fungus *Gliocladium* sp., which was separated from sea grass *Syringodium isoetifolium*, and the structure was elucidated by spectroscopic data. The relative stereochemistry of C-2–C-3 was assigned by mainly *J*-based configuration analysis, while those of two sugar units were elucidated to be β -mannopyranoside and arabitol on the basis of NOESY data and/or ¹H–¹H couplings. Furthermore, the absolute configuration of the mannose moiety was determined as the D-form on the basis of chiral HPLC analysis of a benzoyl derivative of the acid hydrolysate of **1**. Cladionol A (1) exhibited modest cytotoxicity.

Marine-derived fungi have proven to be a rich source of structurally unique and biologically active secondary metabolites.¹ In our search for new metabolites from marinederived fungi,² a new cytotoxic polyketide glycoside, cladionol A (1), was isolated from the cultured broth of a fungus *Gliocladium* sp., which was separated from a sea grass. In this paper, we describe the isolation and structure elucidation of **1**.

The fungus *Gliocladium* sp. (strain L049) was separated from a sea grass *Syringodium isoetifolium* collected at Maeda Cape, Okinawa Island, and grown in starch-casein liquid medium containing 50% seawater for 14 days at 28 °C. The supernatant of the culture broth (12 L) was extracted with EtOAc, and the EtOAc-soluble portions were subjected to Si gel column chromatography (CHCl₃/MeOH, 80:20) and then C₁₈ HPLC (MeOH/H₂O, 82:18) to afford cladionol A (1, 2.1 mg) together with known related compounds, roselipins 2A (2) and 2B (3).^{3,4}

Cladionol A (1) was obtained as an optically active colorless amorphous solid $\{[\alpha]^{22}_D + 36^\circ (c, 0.2, MeOH)\}$. The molecular formula of 1 was revealed to be $C_{45}H_{80}O_{16}$ by HRFABMS [m/z 899.5305, $(M + Na)^+$, $\Delta -3.9$ mmu]. The IR spectrum suggested the presence of OH (3347 cm⁻¹) and carbonyl group(s) (1734 cm⁻¹). ¹H and ¹³C NMR (Table 1) data of 1 disclosed totally 45 carbon signals due to two ester carbonyls, three double bonds, 19 sp³ methines including a hemiacetal and 10 oxymethines, six sp³ methylenes including three oxymethylenes, and 12 methyls (an acetyl, three olefinic, seven doublet, and a triplet methyl).

The gross structure of cladionol A (1) was elucidated by spectroscopic data including 2D NMR data such as ¹H⁻¹H COSY, TOCSY, HMQC, and HMBC spectra. Six proton networks from H-2 to H-3 and H₃-23, from H-5 to H-7 and H₃-25, from H-9 to H-11 and H₃-27, and from H-13 to H₃-22 and four doublet methyls (H₃-29, H₃-30, H₃-31, and H₃-32), from H₂-1' to H₂-5' and from H-1" to H₂-6", were suggested by analysis of the ¹H⁻¹H COSY and TOCSY spectra (Figure 1). The presence of three trisubstituted double bonds at C-4–C-5, C-8–C-9, and C-12–C-13 was deduced from HMBC correlations for H₃-24 to C-3,

C-4, and C-5, H₃-26 to C-7, C-8, and C-9, and H₃-28 to C-11, C-12, and C-13. Chemical shifts of the allylic methyl carbons of C-24 (δ 12.3), C-26 (δ 12.2), and C-28 (δ 12.1) suggested that the double bonds were all *E*-geometry.⁵ HMBC correlations were observed for H-3, H₃-23, and H-1' to an ester carbonyl carbon (δ 178.0), suggesting that the tetraol moiety of C-1'-C-5' was attached to C-1. HMBC correlations for a proton of the hemiacetal ($\delta_{\rm C}$ 103.4) to C-15 and C-5" implied that a hexopyranose moiety was attached to C-15. Attachment on the acetyl group at C-6" was deduced from the HMBC correlation for H-6"/C-7".

The relative stereochemistry of the hexopyranose moiety was elucidated on the basis of NOESY data and ¹H–¹H couplings (Figure 2). NOESY correlations for H-1"/H-3", H-1"/H-5", and H-3"/H-5" suggested that the hexopyranose took a boat form with axial orientations for H-1", H-3", and H-5". *anti* orientations for H-3"/H-4" and H-3"/H-5" were deduced from the J(H-3"/H-4") and J(H-4"/H-5") values (9.1 and 9.6 Hz, respectively). The relatively small value (3.1 Hz) for J(H-2"/H-3") indicated an equatorial orientation for H-2". Thus, the hexopyranose unit was assigned as a β -mannopyranoside. Although stereochemistries for nine chiral centers of the polyketide chain were

^{*}To whom correspondence should be addressed. Phone: +81 11 706 4985. Fax: +81 11 706 4989. E-mail: jkobay@ pharm.hokudai.ac.jp.

[†] Hokkaido University.

[‡] Chiba University.

Table 1. ¹H and ¹³C NMR Data of Cladionol A (1) in CD₃OD

positn.	δ_{C}		$\delta_{\mathrm{H}}(\mathrm{m,Hz})$		positn.	δ_{C}		$\delta_{\mathrm{H}}(\mathrm{m,Hz})$	
1	178.00	С			24	12.31	CH_3	1.66^{a}	brs
2	35.02	CH	2.62	m	25	18.56	CH_3	0.78^a	d, 6.8
3	87.99	CH	4.07	d, 10.4	26	12.23	CH_3	1.63^{a}	d, 1.2
4	135.08	С			27	19.37	CH_3	0.94^a	d, 6.4
5	135.57	CH	5.34	d, 9.2	28	12.06	CH_3	1.62^{a}	brs
6	37.83	CH	2.60	m	29	22.13	CH_3	0.97^a	d, 7.2
7	84.95	CH	3.80	m	30	16.34	CH_3	0.95^a	d, 7.2
8	136.77	С			31	22.13	CH_3	0.90^{a}	d, 6.4
9	134.87	CH	5.28	dd, 8.5, 1,2	32	19.37	CH_3	0.88^{a}	d, 6.4
10	37.43	CH	2.72	m	1'	69.30	CH_2	4.25	dd, 11.2, 6.8
								4.19	d, 6.0
11	85.24	CH	3.64	m	2'	73.49	CH	4.11	m
12	136.02	С			3′	72.90	CH	3.51	dd, 2.0, 8.5
13	135.69	CH	5.52	dd, 9.4, 1.2	4'	72.06	CH	3.71	m
14	37.03	CH	2.72	m	5'	65.60	CH_2	3.80	dd, 10.5, 3.2
								3.62	dd, 10.5, 6.0
15	88.08	CH	3.43	dd, 6.7, 2.9	1‴	103.44	CH	4.50	brs
16	33.71	CH	1.86	m	2"	73.87	CH	3.90	d, 2.8
17	44.74	CH_2	1.38	m	3″	76.44	CH	3.36	dd, 9.2, 3.2
			0.98	m					
18	29.61	CH	1.53	m	4‴	70.00	CH	3.50	dd, 9.6, 9.1
19	46.85	CH_2	1.23	m	5''	79.04	CH	3.35	m
			0.90	m					
20	30.67	CH	1.31	m	6″	63.69	CH_2	4.41	dd, 11.7, 2.4
								4.25	dd, 11.2, 6.8
21	31.57	CH_2	1.42	m	7″	172.50	\mathbf{C}		
			1.07	m					
22	12.31	CH_3	0.93^{a}	t, 7.2	8″	21.53	CH_3	2.08^{a}	S
23	18.62	CH_3	0.96^{a}	d, 6.8					

^a 3H.

Figure 1. Selected 2D NMR correlations for cladionol A (1).

Figure 2. NOESY correlations and relative streochemistry for the hexapyranose moiety in cladionol A (1).

not determined unambiguously, the C-2–C-3 portion was assigned as erythro from the J(H-2/H-3) value (10.4 Hz) and NOESY correlations for H-2/H₃-23 and H₃-23/H₃-24 (Figure 3). Since ¹H and ¹³C NMR data (Table 1) and ¹H–¹H couplings (H-1/H-1': 11.2 Hz; H-1/H-2': 6.8 and 6.0 Hz, H-2/H-3': 2.0 Hz, H-3/H-4': 8.5 Hz, H-4/H-5': 3.2 and 6.0 Hz, H-5/H-5': 10.5 Hz) for the pentitol moiety of **1** were similar to those for the corresponding part of roselipin 2B (**3**), the pentitol moiety of **1** was suggested to be arabitol like **3**. The absolute configuration of the mannose moiety was determined as the D-form on the basis of chiral HPLC analysis of a benzoyl derivative of the acid hydrolysate of **1**.

Cladionol A (1) is a new polyketide glycoside similar to known polyketide antibiotics such as roselipins^{3,4} and

Figure 3. Rotational model for the C-2-C-3 bond in cladionol A (1).

TMC-151s⁶ from fungi *Gliocladium* spp. Cladionol A (1) exhibited cytotoxicity against murine leukemia L1210 and human epidermoid carcinoma KB cells with IC_{50} values of 5 and 7 μ g/mL, respectively.

Experimental Section

General Experimental Procedures. Optical rotations were recorded on a JASCO DIP-1000 polarimeter. The IR and UV spectra were taken on a JASCO FT/IR-5300 and JASCO Ubest-35 spectrophotometer, respectively. ¹H and ¹³C NMR spectra were recorded on a 600 MHz spectrometer using 2.5 mm micro cells for CDCl₃ (Shigemi Co., Ltd.). FAB mass spectra were obtained on a JEOL HX-110 spectrometer using nitrobenzyl alcohol as a matrix.

Fungal Material and Fermentation. The fungus *Gliocladium* sp. (L049) was isolated from a sea grass *Syringodium isoetifolium* collected at Maeda Cape, Okinawa Island. Subcultures of the fungus are deposited at the Graduate School of Pharmaceutical Sciences, Hokkaido University. The fungus was grown in Starch-Casein liquid medium (starch, 1%; casein, 0.1%; pH 7.5) containing 50% seawater for 14 days at 28 °C. The cultured broth (12 L) was filtered.

Extraction and Separation. The supernatant (12 L) of the cultured broth was extracted with EtOAc (1 L \times 2). The EtOAc-soluble portions (115 mg, wet weight) were subjected to a Si gel column (CHCl₃/MeOH, 80:20) and C₁₈ HPLC (Develosil ODS-5, Nomura Co., Ltd., 10 \times 250 mm; eluent, MeOH/H₂O, 82:18; flow rate, 2 mL/min; UV detection at 220 nm) to afford cladionol A (1, 2.1 mg, t_R 25 min). Roselipins

2A (2, 21.8 mg) and 2B (3, 20.5 mg) were obtained from other fractions of the EtOAc-soluble portion.

Cladionol A (1): colorless amorphous solid; $[\alpha]^{22}_{D}$ +36° (c 0.2, MeOH); IR (film) v_{max} 3347, 2924, 1734 cm⁻¹; ¹H and ¹³C NMR, see Table 1; FABMS (pos.) m/z 899 (M + Na)⁺; HRFABMS (pos.) m/z 899.5305 [(M + Na)⁺, calcd for C₄₅H₈₀O₁₆-Na 899.5344].

Determination of Stereochemistry of the Mannose Unit in Cladionol A (1) by Chiral HPLC. Cladionol A (1, 0.3 mg) was treated with 3% HCl/MeOH (300 μ L) at 110 °C for 1 h. After the solvent was removed by nitrogen stream, to the residue was added $CHCl_3$ (100 μ L) and then the CHCl_3 solution was extracted with $H_2O~(100~\mu L \times 3).$ The aqueous fraction evaporated in vacuo was treated with pyridine (100 μ L), triethylamine (15 μ L), and benzoyl chloride $(15 \,\mu\text{L})$, at room temperature for 21 h. After addition of MeOH (100 μ L), the reaction mixture was extracted with hexane (100 μ L \times 3). The hexane-soluble fraction was evaporated in vacuo to afford O-benzoyl/methyl derivatives of the sugar unit in 1. Authentic D- and L-mannose were treated with benzoyl chloride as described above to yield O-benzoyl/methyl derivatives of D- and L-mannose, respectively. The O-benzoyl/methyl derivatives were subjected to chiral HPLC analyses using Chiralpak OP(+) (Daicel Chemical Industry, Ltd., 4.6 \times 250 mm; MeOH; flow rate, 0.5 mL/min; UV detection at 254 nm). The retention time of O-benzovl/methyl derivatives of the methanolysis product of 1 was found to be 24.5 min, while the retention times of O-benzoyl/methyl derivatives of

authentic D- and L-mannose were found to be 24.5 and 26.0 min, respectively.

Acknowledgment. This work was partly supported by grants for the Akiyama Foundation and Takeda Scientific Foundation and a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

References and Notes

- (a) Blunt, J. W.; Copp, B. R.; Munro, M. H. G.; Northcote, P. T.; Princep, P. R. Nat. Prod. Rep. 2004, 21, 1–49. (b) Blunt, J. W.; Copp, B. R.; Munro, M. H. G.; Northcote, P. T.; Princep, P. R. Nat. Prod. Rep. 2003, 20, 1-48. (c) Faulkner, D. J. Nat. Prod. Rep. 2002, 19, (2) Tsuda, M.; Sato, Y.; Tanaka, Y.; Yazawa, K.; Mikami, Y.; Kobayashi,
- J. J. Chem. Soc., Perkin Trans. 1 1996, 1773–1775. Tomoda, H.; Ohyama, Y.; Abe, T.; Tabata, N.; Namikoshi, M.; Yamaguchi, Y.; Masuma, R.; Omura, S. J. Antibiot. 1999, 52, 689– 694.
- (4) Tabata, N.; Ohyama, Y.; Tomoda, H.; Abe, T.; Namikoshi, M.; Omura, S. J. Antibiot. 1999, 52, 815-826.
- (5) The $^{13}\mathrm{C}$ chemical shift of the allylic methyl group resonated at δ_{C} 24 and 12 for the Z- and E-olefins, respectively: Kalinnowski, H.-O.; Berger, S.; Braun, S. *Carbon-13 NMR Spectroscopy*; John Wiley & Sons: Chichester, 1988; p 293.
- (6) Kohno, J.; Nishio, M.; Sakurai, M.; Kawano, K.; Hiramatsu, H.; Kameda, N.; Kishi, N.; Yamashita, T.; Okuda, T.; Komatsubara, S. Tetrahedron 1999, 55, 7771-7786.

NP050046B